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Electrical Aspects of Adsorbing Colloid Flotation. XIl.
Floc Diffusion Rates in Nonideal Systems

R. MOFFATT KENNEDY III and DAVID J. WILSON*

DEPARTMENT OF CHEMISTRY
VANDERBILT UNIVERSITY
NASHVILLE, TENNESSEE 37235

Abstract

The dynamics of the diffusion of charged floc particles to charged air-water
interfaces is examined within the framework of a modified Gouy-Chapman
model in which the finite volumes of floc particles and inert electrolytes were
taken into account. The methods of Verwey and Overbeek were used to cal-
culate the electrical free energy of the floc-interface interaction. For the cases
considered, diffusion was found to be quite rapid. Fluid mechanical considera-
tions were used to calculate the capture cross-sections of rising bubbles for
suspended floc particles; bubbles in the creeping and inviscid flow regimes
were considered. These results were used to calculate removal rates from batch
and continuous-flow pool-type foam flotation devices.

INTRODUCTION

The applications of foam flotation methods for the removal of inorganics
from industrial wastewaters and for the recovery of trace inorganics for
analysis have been studied extensively; a number of reviews are available
(I1-4). Grieves, Bhattacharyya, and their co-workers have published exten-
sively on the use of foam flotation techniques in waste treatment; of
particular interest to us here are their precipitate flotation studies of
chromic hydroxide (5) and of wet scrubber wastewaters resulting from
SO, removal from stack gases (6). Their work and the applications of
adsorbing colloid flotation to trace metals analyses in seawater by Zeitlin
and his co-workers (7-10, for example) encouraged us to explore the
development of precipitate or adsorbing colloid flotation separations
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for a number of inorganic contaminants in industrial wastewaters (11-15).
We also investigated the theory of the adsorption of precipitates at the
air—water interface (16-19); Huang and Lee have also published recently
on the coulombic model for precipitate-bubble attachment (20).

One of the problems of interest in the flotation of flocs and precipitates
is the dynamics of the forced diffusion of the particles to the air-water
interface. The rate of this process, the range of the attractive force, the
pattern of the streamlines of the liquid relative to the rising bubble, and the
rise velocity of the bubble determine the efficiency of the bubble in scaveng-
ing the particles from the solution. Huang used a simplified Gouy-
Chapman model previously to examine forced diffusion of particles to the
air-water interface (2/); we here investigate a more exact model in which
the attractive force is calculated by a modification of the method of Verwey
and Overbeek for calculating the free energy of interaction (22) which takes
into account the finite volumes of the ions (/6). This yields information
about the distance from which a bubble may attract a floc particle as liquid
streams pass the rising bubble. We then examine the streamlines of the
liquid flowing past the bubble to determine the effective collision cross-
section of the bubble for floc particles. With this result it becomes possible
for us to calculate rates of floc removal from both dilute and concentrated
suspensions in batch and continuous-flow pool flotation experiments.

NONIDEAL DIFFUSION

Analysis

We examine the diffusion of charged particles in a thin film of water
bounded by two air—water interfaces onto which a charged surfactant is
absorbed. We let

L = the distance between the two air—water interfaces
Yo = surface potential of the air—water interfaces
¥, = surface potential of the floc due to its adsorption of potential-
determining ions
x = distance from the left air-water interface

I

See Fig. 1. When the floc is of opposite potential to the air—water interface,
the electrical attraction between this interface and the particles causes a
migration of particles until the increase in particle chemical potential due
to increased particle concentration balances out the decrease in the electri-
cal potential energy of the particle. The solution is divided into 2/ slabs
of unit area oriented parallel to the air-water interfaces. The distance of
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Surfactant ion

FiG. 1. The model for analysis of diffusion rates in films.

closest approach of a particle to the surface is considered to be 10 A.
Note that there is no net diffusion across the center of the film due to the
symmetry of the problem, so that we need deal with only that half of the
solution between 0 and L/2.

The electrical potential in the region between the air-water interface
and the water—floc interface is calculated by the method used previously
(23), as outlined below. A 1-1 electrolyte is assumed, the ions of which are
of comparable radius. The chemical potential is taken to be

+ + + Crmax
x) = + KTlnc*(x) + kTIn - 1
BEX) = po™ £ eP(x) + c*(x) + T+ ) M
where u* = chemical potential of cation (anion)
c* = cation (anion) concentration, ions/cm>
Cmax = Maximum electrolyte ion concentration

The last term corrects for the nonideality of the inert electrolyte due to
the finite volumes of the ions. At large distances from the surface the
electric potential decreases to zero so that

pE(0) = po* + kTlnc, + kTln — = @)
Crax — 2coo
where c, is the salt concentration in the bulk solution. Since the chemical
potentials at equilibrium are independent of x, they may be equated,
yielding
Cmax _ e‘p(x)

*
P P + T + In ¢*(x)

Inc, + In

Cmax
Crnax — [C+(X) - C—(X)] (3)

+ In
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Now let
*
+ _ ¢ _ Coo — EW(X)
f B Cmax — (C+ + C—) - Cmax — 2coo eXp <+ kT (4)
from which we find
£
E(y) = — CmaxS T
4 (X) l +f+ +f— (5)
The charge density in solution is given by
p=elct —c) (6)

Substitution of Egs. (4) and (5) into (6), and (6) into Poisson’s equation
yields the modified Poisson-Boltzmann equation

d*y _ Asinh (ey/kT)

dx¥ ~ 1 + Bcosh (eY/kT) ™
where
8nec,,
A= (1 - 2Coo/cmax)D
and

B = 2ccuo/(cmax - zcoo)

For ions of |charge| ve, replace e by ve in these equations. Verwey and
Overbeek present a complete discussion of the ideal case (22).

The free energy of interaction per unit area between the fixed potential
surfaces is calculated by a method discussed by Devereux and deBruyn
(24). The charges of all ions, those adsorbed and those in solution, are
imagined to be gradually built up in infinitesimal steps, ve di. Lambda, 4,
the charging parameter, varies from 0 to 1, and v is the valence of the ions.
The free energy is equivalent to the work required to charge the double
layers reversibly and isothermally plus a term contributed when A = 0.
The equilibrium condition for adsorption is

Au + vey =0 ®

where Ay is the difference of the chemical potentials of an adsorbed ion
and a free ion in solution, and ¥, is the surface potential of the air—water
interface. In charging the adsorbed layer, the chemical potential difference,
Ay, is considered to vary also; otherwise, as A approaches zero, the surface
potential is forced to infinity:

Ap + Aveyg = 0 ®
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Therefore
Ay + Aveyy =0 (10)

and ¥, remains constant. This condition has the advantage that the electri-
cal work done in charging the adsorbed ions is exactly canceled by the
change in chemical free energy of adsorption. The total free energy of the
double layer is thus determined by the electrical work required to charge
the ions in solution. The argument is exactly analogous for ¥/, the water—
floc surface potential. The charge density and potential at a point in
solution for a particular value of A we take as p’ and V', respectively.
The net excess concentration of charge determining ions is then p’/Ave,_
and the work required to increase the charge of these ions by ve di is
p'y' dijA. This work differential is integrated over the volume of solution

to complete charge:
Lda
GS=J TJjjw’p'dxdydz (11
0

Since Y, and Y, are constant, the double layers will have a nonzero
potential energy at A = 0, which is dependent upon the distance separating
the two planes, d. For parallel planes,

D 2
G(O) = . (AY) (12
where
AY =y — Yo
The total energy for the system is therefore expressed by
D 2 ! dl N
Gld) = ~8nd Ay)* + J.O T .”jt// p dx dy dz (13)

The analysis (23) is outlined as follows. For the geometry of the system
being considered, parallel planes, the space integration simplifies to one
variable, x. The surface potentials may also be substituted, giving

Gld) = —gs Gy — o) + j j OV e aa (14)

Poisson’s equation and Eq. (7) give

, D&y D Adsinh(fed) s
P =332 = " 1+ Bcosh (Bery) (15)

where
B = 1/kT
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Substituting Eq. (15) and the identity

Y di = (/up ) di — @Lp_ dl (16)

into Eq. (14) yields

4 P . .y
Gd) = — 2y — %V—j[ DA sinh (Pei) ?”W)ﬂw

8nd 4n[l + B cosh (Behp)]
Y
+.[ J I o ox? dhex
= 8—7'5—3 W, - ‘po)2 + 5L+ 1 ()]

Integrating I, with respect to (Ay) gives

4 DA 1 + B cosh (Bey)
L= _L 4nefB I“[ 1+ B ]d" (18)
As has been shown (24),
D alpr 2
1, = 87:_[ j 6/1<0 ) di dx (19)
which integrates to
D [ [oy\? D 5
n= g | (32) @+ g - w0 @0

In order to change the variable of integration, the first integral of Eq. (7)
is obtained by Newton’s method:

dy [dw 24 1+Bcosh(eﬂ¢)]”2

P - In

@n

dx | =0 + E'B_B 1 + Bcosh (efyrg)

Equations (20) and (18) are now substituted into Eq. (17), changing the
variable of integration from x to ¥, to obtain

(1 + B cosh Bey)?

oy 2 [T B Beosh fedd
T 8m )y, Hoa el LT B cosh Bey 1'%
teln 1 + Bcosh ey,
where
AN 24
H= <CE> im0 and c = JB (23)

At infinite separations, G(c0) is not zero, due to the existence of double
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layers at each interface. Since the free energy of interaction of the double
layers is the quantity desired, G(d) must be referenced to G(0). G(c0) is
calculated as follows. From Eq. (21),

v dyr*
) = Lo 1+ o Lt Boosh peyF 7 (232)
[ t M T Boosh ﬁewo]

Now if d - o0, the denominator of the integrand must vanish as  — 0
since the limits of the integral are finite. Therefore

1 B h
iz = 1) = etn PG @
so that
(1 + Bcosh Bey)?
D (v H(0) + cln (1 + B)Y(1 + Bcosh Bey,)
G(o0) = ___8;[ (25)

I + Bcosh 12
Vo I:H(oo)+cln + Bcos ﬁex//]

1 + Bcosh fey

The following usage of G is with respect to G(0), i.e.,
G = G(d) — G()

The chemical potential of a floc particle we take as given as a function
of position by

wx) = o + G(x) + kTIn [C -l—_—lc/z,;} (26)

The activity coefficient, (1 — C/Cy,) ™!, which is analogous to the one used

previously for the electrolyte, corrects for the excluded volume of the floc

particles; C is the concentration of floc particles which is understood to
be a function of two variables, x and time .

The differential equation governing isothermal diffusion in a fluid

medium in the presence of a varying chemical potential is
oC 1
= e V(CVu) 7))

where 7 is the fluid viscosity and r, is the effective radius of the particle.
In planar geometry, Eq. (27) simplifies to

oc 1 &/ ou

ot 6mnr, é—i(C 5)?) (28)
Substitution of Eq. (26) into Eq. (28) yields a nonlinear partial differential
equation which is not solvable in closed form. In addition, values of G(x)
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are not given in a closed form. Therefore it is necessary to integrate the
equation numerically. A predictor-corrector method (25) was utilized
which has been shown to have good stability (21) in problems of this type.
From Fick’s First Law of Diffusion we see that the term in parenthesis
in Eq. (28) is proportional to the negative flux of particles at a point in the
solution. For the cell model being considered, the flux at the right-hand
side, the side toward the bulk solution, of the ith cell is taken to be

Ci— + C)\ oy 1
ouT _ _ i—1 i i~1
Ji < 2 > ox 6nnr (29)

The superscript “OUT” indicates that the migration of particles is out of
the cell if du;/0x is positive and the average of the concentrations approxi-
mates that at the wall. The flux into the cell at the left-hand wall (if
Oy, /0x is positive) is

Ci_1 + C)\ ou;_ 1
S B £ i i-1
Ji ( 2 ) dox 6mnry (30)

The finite difference representation of Eq. (28) for the change with time in
the number of particles in the ith cell is

acait(t)'__-i(‘lim — JoUTy (31)

Substituting Egs. (29) and (30) into Eq. (31) and including the finite differ-
ence representation of the derivatives of the potentials gives the final form

aC() 1 1[/Ciy + C\(irs — Wi
ot 6m1r0 Ax 2 Ax

Cpoez)] e

oC (¢
_é_t(—) = f(fis1> Bis thim1> Cis 1, Cis Ci1) (33)

Let

Equations (33) are now integrated with respect to ¢ by the predictor-
corrector method.

Predictor:

Tt + At = Ct — Ar) + 280 =28 '(t) (34)
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oC{(t + At _ _ _ = ~ =
—_LW-_) = flii+,(t + At), gt + A1), g;_,(t + A1), C;, 1, C;, Ciy]
(3%
Corrector:
At[oC: OC(t + At
Cit + Ay = C(1) + ’[ ), Xl )] (36)

The starter formula for the use of the predictor-corrector is taken from
Euler’s method:

oC(t)

Ci(t + At) = C(t) + At Er

G7

The boundary conditions are given by the requirements that there be
no flux of floc particles at x = 0 and x = L/2, the center of the aqueous
film. Then, in the first cell,

N 0
which gives
aCc(1) _ 1 11/C + Ci\ (42 — 1y (38)
ot 6nnry, Ax 2 x
In the Nth cell,
JNOUT =0
Therefore
OCx(1) — 1 1[ /Cy_y + Cy\[tn — Un-1 (39)
ot 6anry Ax 2 Ax

A necessary condition of the numerical representation is that it conserves
the total number of particles in the film at all times; i.e.,

r’ 2 9C(x, t) Z 6C,(t)Ax

S TEE = Q, forall ¢ (40)
0 f=

This requirement may be seen to be fulfilled by summing Eq. (31), noting
that J;, " = J;°VT and that J;N = J V"= 0.

The concentration profile at equilibrium may be calculated by equating
the chemical potentials of the floc particles in the potential fleld and in
the bulk solution, where G(o0) = 0. This gives

C* C

G, + lenﬁWH:lenm (41)
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which yields

__ Cooxp(=G/kT)
"1+ C,/Cylexp (—Gi/kT) — 1]

C’ 42)

To estimate the rate at which a nonequilibrium initial distribution of
particles approaches the final equilibrium distribution, the following
function is computed:

N N
Vo = ¥ 160 - CF[ 3 ¢ @)

V() is the statistical variance of the concentration from that at equilibrium,
divided by a normalizing factor. In all of the following calculations this
initial distribution was taken as constant throughout the film and of a
value of 10™% C,,, except where noted. A semilog plot of V(r) vs ¢ will
yield information on the nature of the decay to equilibrium. Where
essentially linear plots are obtained, the decay to equilibrium is expo-
nential. The slope is then twice the rate constant, k, due to squaring the
differences in V(¢). The range over which the rate constant varies may be
deduced if the plot is appreciably nonlinear.

Results

Concentration distributions of floc particles at various times are shown
in Fig. 2 for a 100-A film. Since they are symmetrical, the curves are drawn
only to L/2. The closest approach of the colloid to the air-water interface
is restricted to 10 A. The parameters of the system are given in the caption.
In all calculations the values of the dielectric constant and viscosity of the
solvent were taken as those at 25°C, viz., 78.54 and 0.01 poise, respectively,
except where influence of these parameters was investigated. The floc
radius was 5.64 A. It can be seen that there is initially a rapid influx of
particles in the region nearest the charged surface. Minima in the curves
are seen to develop since thermal diffusion is not fast enough to fill the
depleted area. These regions progress into the solution until at equilibrium
the curve is monotonic, the minimum occurring in the center of the film.
The slopes of these curves should be zero at L/2 since du/dx = 0 at that
point. In fact, du/dx is not zero there for this 100 A film; at x = L/2 the
particle still has a nonzero interaction energy with the air—water interface
which is at x = 0, and the influence of the other air-water interface at
x = L is neglected in our calculation. Figure 3 shows similar plots for a
200-A film in which 8C/dx is essentially zero at x=L/2. There is no interac-
tion at that distance, Y(L/2) = 0, so that du/dx = 0 in the center. This
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FiG. 2. Colloid concentration vs distance from the air-water interface at various
times, L = 100A. wo = —50mV, w, = 50 mV, Cmax = 10~2 mole/cc, ¢ =

10~% mole/cc
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FiG. 3. Colloid concentration vs distance from the air-water interface at various
times, L = 200A. wo = —50mV, v, = S0mV, cmx = 1072 mole/cc, co =

10~ % mole/cc.
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problem is not a factor in the calculations of the rate constants, since this
200 A film is the thinnest we normally considered.

Figure 4 shows the time dependence of V(¢) at various inert 1-1 elec-
trolyte concentrations. After initial rapid decay, the slope of In V(¢) vs ¢
becomes constant for these 400 A films. Rate constants for these curves are
given in Table 1. Also in Table 1 are the rate constants calculated with
other values of c,,,,. For c,,, = 1072 mole/cc, increasing the electrolyte
concentration from 107> to 10~ 3 mole/cc increases the rate constant, and
in the range of 107° to 10”7 mole/cc the rate constant varies negligibly.
In the latter range the free energy of interaction is large near the air-water
interface and extends a great distance into the film. This condition neces-
sitates large changes in the floc concentrations as equilibrium is
approached; positive near x = 0 and negative near x = L/2. Therefore
a large fraction of the total number of particles must migrate from the bulk
solution to the surface. After initial redistribution due to electrical forces,
migration is increasingly due simply to random movement. Therefore the
rate constants are smaller than those in the ¢, = 107° to 10™3 mole/cc
range. In this more concentrated range the free energy near the surface is
rapidly decreasing in absolute value with increasing salt concentration,

10p

1k
_I\W
107+ Toad
10"

0t
-4
vit) - 10

107

D-‘
' i ' i - |°-'l
0% 2x10-7

t(sec)

FiG. 4. Change of V(¢) with time at several inert electrolyte concentrations
(given beside each curve in mole/cc). cmax = 1072 mole/cc, wo = —100mV,
v, = 100mV, L = 400 A.
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TABLE 1

Variation of Rate Constants with Inert Salt Concentration®

Crmax c k x 10-¢
(mole/cc) (mole/cc) (sec™h)
10-4 10-5 5.908
10-6 6.006
10-7 6.071
10-3 10—+ 7.152
10-5 5.975
10-5 6.002
10-7 6.072
10-2 10-3 10.063
104 7.618
10-5 5.993
10-° 6.001
10-7 6.072

eConditions: L = 400 A, yo = —100mV, y, = 100 mV.

while at the same time the extent to which the potential’s influence reaches
out into the solution decreases due to ionic screening. The resulting
decrease in equilibrium particle concentration in the vicinity of the air~
water interface causes an increase in the rate constant since the transfer
of particles from one region of the film to another is not so extensive. The
effect of nonideality of the salt is small, but may be seen by examining
data at ¢, = 107° mole/cc, at which the rate constant is seen to decrease
with decreasing maximum concentration, c,,,. These rate constants may
be compared to the eigenvalues obtained in the simple one-dimensional
diffusion problem with absorbing boundaries, the lowest of which is

_ kT
4 6nroL?

For the conditions in Table 1, A; = 2.4 x 10° sec™!. This least value is
not a close approximation to the driven diffusion rate constants.

The effects of varying the electric potentials are next examined. Figure
5 shows the change of V(¢) with /,, the water-floc potential, and Table 2
gives the rate constants. As ¥, decreases, the rate constant increases. The
explanation is the same as the one for the case of salt concentration
dependence; increasing the potential increases the amount of colloid that
must migrate past a given plane. After a quick redistribution in the electric
field, migration is limited by thermal diffusion. The effects are reciprocal
in that interchanging the absolute values of ¥, and /; does not change the
rate constant since the potential energy is unchanged; this gives a con-
sistency check on our analysis and computer programs.

(44)
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10
1k
10"
100
D-l
Vi) 50
107k
3 25
Io-4 1 I 1 Il 3
) | 2x10”
t (sec)

FiG. 5. Change of V() with time at several water—floc potentials (i, given beside
each curve in mV). gy, = —100mV, ¢nex = 1072 mole/ce, ¢ = 10~ mole/ce,
L = 400 A.

TABLE 2
Variation of Rate Constants with the Surface Potentials®
Yo vy k x 10-6
(mV) (mV) (sec™1)
—100 100 5.966
—100 50 7.912
—100 25 8.876
—50 100 7.912
—50 50 9.358
—50 25 9.903
—25 100 8.876
—25 50 9.903
—25 25 10.22

9Conditions: cmax = 1072 mole/cc, ¢ = 10~5 mole/cc, L = 400 A.

Rate constants increase with increasing temperature as shown in Table 3.
In Table 4 is the variation in rate with the radius of the floc particle.
Increasing the radius decreases the rate constant. Evidently the effect of
the increased viscous drag, which affects particle motions throughout the
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TABLE 3
Variation of Rate Constants with Temperature
Temperature (°C) k X 1079 (sec™1)
10 8.739
25 9.358
50 10.38
75 11.39
90 11.97
TABLE 4
Variation of Rate Constants with Floc Radius?
Radius (A) k x 1076 (sec™1)
5.64 9.358
6.77 7.358
7.90 5.870
9.03 4.731
10.14 3.824
11.28 3.129
14.10 2.074
16.93 1.652

“Conditions: L = 400 A, cmaxy = 10~2 mole/cc, ¢ = 10~% mole/cc, yo = —50 mV,
w; = 50mV.

TABLE 5
Variation of Rate Constants with Electrolyte Charge
Charge
(elementary units of charge) k x 1076 (sec™ 1)
1 9.358
9.686
3 10.05

solution, is greater than that of the increased electrostatic attraction,
which operates only in the boundary layer where an electric potential
gradient exists.

In Table 5, rate constants are seen to increase with increasing charge
of the 1-1 electrolyte. The explanation is as before when the electric
potential is changed by screening due to increased electrolyte concentra-
tion; a smaller amount of floc must be moved. The small variation of the
rate constants with initial floc concentration, shown in Table 6, indicates
the excluded volume of the particles has only a minor effect. The initial
concentrations are fractions of the maximum floc concentration, C,,. Rate
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TABLE 6

Variation of Rate Constants with Initial Floc Concentration®

Initial concentration

(mole/cc) k x 1079 (sec™!)
104 Cyn 9.368

1073 Cy 9.368

1072 Cyp 9.482

107! Cu 10.69

aConditions: L = 400 A, cmayx = 10~2 mole/cc, ¢ = 1075 mole/cc, wo = —50mV,
v, = 50 mV.

107'r
0
v(t)
1000
4000
103l 2000
- 500
1 400
-4 n [l 1 1 —
106 ] 2x10™"

t (sec)

F1G. 6. Change of V(r) with time at several film lengths (L given beside each
curve in A). wo = —50mV, w, = 50mV, cpn = 1072 mole/cc, ¢ = 107°
mole/cc.

constants increase with increasing concentration, which is probably due to
a limitation of the total movement of particles when concentrations in the
vicinity of the air-water interface are near the maximum possible.

The last plot shows changes in V() at film thicknesses of 400 to 4000 A.
The data in Fig. 6 yield the rate constants in Table 7. As expected from
Eq. (44), the rate constants decrease with increasing thickness of the film.
The decrease approximates the inverse square relationship for very thin
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TABLE 7
Variation of Rate Constants with Film Length
Length (A) k x 1078 (sec™ ')
200 41.90
400 9.358
500 5.598
750 2.957
1000 2172
2000 1.554
3000 1.442
4000 1.381
TABLE 8
Change of the Rate Constant with Time for L = 4000 A®
Time x 107 (sec) k x 10~¢ (sec™?)
2.19 1.381
8.72 0.414
348 0.139
“Conditions: yo = —50mV, y; = 50 mV, ¢m.x = 10~2 mole/cc, ¢ = 105 mole/cc.

films but does not adhere at all to that relationship for thicker films.
Close examination of the graphs shows V() not to be linear at longer
lengths, however, and indeed, Table 8 shows a dramatic change in k& with
time. Calculation of k at the longest time required 5 min of computer time;
therefore, to search for a limiting value of k would require excessive
computer time. It is concluded then that for a large film thickness, k&
varies over a wide range of values, though still large, and does not soon
become constant as was thought in the ideal case (21). Most of the rate
constants determined in this nonideal case are slightly less than those
calculated by the ideal model. Since the parameter values of the ideal and
nonideal models were not exactly the same, an exact comparison is not
possible, but values in this work may be extrapolated to the conditions of
the ideal case. Interpolating between L = 200 A and L = 400 A to the
value of 300 A used in the ideal model and also to a particle radius of 10 A
gives a rate constant of 6 x 10° sec™!. The range reported in the ideal case
was 1.5t0 2.0 x 107 sec™ 1.

Conclusions

The nonideal model, which includes activity coefficients for the chemical
potentials of the colloid and inert electrolyte and improved calculation of
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interaction potentials, gives rate constants typically one-third to one-half
those of the ideal model. These values, of the order of 6 x 10¢ sec™!,
are exceedingly large, so that the particle distribution near interfaces in
a dynamic system, such as a flotation cell, must approach that at equi-
librium. This equilibrium may be shifted to a higher density of colloid in
the air-water surface region (thus increasing separation efficiency) by
increasing one or both of the surface potentials, air-water or water—floc,
decreasing dissolved electrolytes, or increasing particle area, but associated
with these changes is a decrease in the rate of approach to that equilibrium.
This result is apparently due to the increase in the total movement of the
particles in the film. The approach to equilibrium does not become an
exponential decay for films greater than 1000 A until extremely long times
have elapsed.

FLUID MECHANICS OF FLOC-BUBBLE ATTACHMENT

Here we examine the rate at which a bubble rising through a pool of
liquid encounters and captures floc particles in its path. We consider that
the liquid is at rest except for the disturbance of the rising spherical bubble
which is moving at a terminal velocity determined by its buoyancy and
viscous drag. In order for capture to occur, we assume that the surface
of the bubble must pass within a distance ¢ of the floc particle, and we
assume that the floc particles as seen from the bubble move past it on the
streamlines of the liquid as the bubble rises.

The Reynolds number for a sphere moving in a fluid is

Re = 2avp/n 45)

where a = sphere radius
v = sphere velocity
p = liquid density
n = liquid viscosity

For Re < 10%, it can be shown that (26)

2gpa® 1{/pav\''?* 0.34pav]!
o= 2005+ M )

For Re < 1, Stokes’ law holds pretty well; one has viscous, streamlined
flow past the sphere, and no eddy wake is formed. At larger Reynolds
numbers a turbulent wake is formed, viscous forces become small com-
pared to momentum forces, and we can approximate the flow as inviscid
(27). The maximum bubble size for which we have viscous, creeping flow
is given by setting Re = 1 and equating the buoyancy force and the
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Stokes’ law viscous drag force

4
-35 palg = 6myav “@n
These relationships yield
9n? )1 /3 _
a= =6.12 x 1073 cm 48
<4ng “8)

for water.
We next examine the path of elements of a viscous fluid in creeping
flow around a rising bubble. The streamlines can be written as

1
z= <2y2 -3y + ;) sin” 6 (49)

The situation is diagrammed in Fig. 7. Here y = r/a, and for any particular
streamline z = a constant. For points a great distance in front of or
behind the bubble (p finite, |x| — o0), we have
: 2rl p? 2p,°
z=2y2s1n29=72—-—1=7 (50)
The streamlines (plotted in Fig. 8) come closest to the bubble when 6 =
n/2, since

d 4y* — 33
d—; = _W cotf =0, when 6 = n/2 (51)
For 8 = n/2 we have

2
a

8

= - <2y3 - 3+5) 52

We let r = a + 8, where 4§ is the distance across which coulombic attrac-
tion could pull the particle to the bubble surface in the time available. So
y = 1 + 6/a, and we assume that é/a « 1. Substitution of this expression

FiG. 7. A bubble rising through a liquid—notation.
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FiG. 8. Streamlines about a bubble rising through a liquid in the creeping flow

regime.

for y into Eq. (52) and expansion of 1/y in ascending powers of J/a then
yields

2 2
L = 36/a 53)
so that
P S /3125 (54)

if the particle is to be captured as the bubble passes. A particle must lie
within a distance +/3/26 of the path of the center of the bubble in order for
it to be able to attach to the bubble as it passes. Since the range of the
particle-bubble forces is rather short, we see that the actual volume of
liquid from which particles would be swept as the bubble rises a distance A
is quite small, given by

Ve = npo2h = (3/2)né%h (55)

The above analysis is based on the assumption that the bubbles are small
enough to be in the viscous creeping flow regime. If the bubbles are
larger, inertial effects become more important, and we approach the case
of inviscid flow. We next examine this case, but must neglect the turbulence
in the wake of the bubble—we assume an ideal inviscid liquid. For this
case the streamlines are given by (27)

z= <2y2 - ;) sin® 9 (56)

where our notation is as before. It is readily shown that z is again given by
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AOp cm
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0 05¢cm 10 15 (4]

} S d

Fic. 9. Streamlines about a bubble rising through a liquid in the inviscid flow
regime.

Eq. (50), and that the streamlines approach most closely to the bubble
when 0 = /2. See Fig. 9. We again let y = 1 + d/a, substitute into Eq.
(56), expand 1/y in ascending powers of &/a, and truncate the series to
obtain

20,2 6 o\?
- —65+0<¢_z> + 57
so that
pe = /30a (58)

if a particle is to be captured. The volume of liquid from which particles
are captured when the bubble rises a distance 4 is

Vi = np,°h = 3ndah (59

which is very much larger than the corresponding volume for the case of
creeping flow, given by Eq. (55).

We next calculate the rate of removal of floc particles by flotation from
a column of liquid of height /# through which bubbles of radius a are
passing at a volumetric flow rate of Q, mL/sec. We let V, be the volume
of liquid being treated. The number of bubbles passed through the
column per second is then given by

4nq®

N = Qa/T (60)

If we let c(¢) be the number of floc particles per milliliter at time ¢z, then
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30,

4ra®

—V,dc = c3ndah dt 61)

gives the rate of change of ¢ with ¢ for bubbles large enough to be in the
inviscid regime. Integration of Eq. (61) yields

—9Q,0ht
C(t) = C(O) exXp [W] (62)
In similar fashion we find that
- 9Q,,52‘ht]
t) = c(0 —_— 63
e(t) = o) exp | 328 ©)

for the creeping flow regime.
Let us next consider a continuous-flow pool-type flotation apparatus of
the sort diagrammed in Fig. 10. We let

Q, = volumetric flow rate of liquid
Q, = volumetric flow rate of air
¢, = influent floc concentration
¢, = effluent floc concentration

The other symbols are as previously defined. In the steady state we have

IndahQ,
coQi = c.Q; + Ce And® (64)
to foam
/@reaker
foam
drainage
influerﬂ ——53
o°°o
088

—5=
air effluent

FiG. 10. A continuous-flow pool-type flotation apparatus.
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if we assume that the pool is well-stirred during the detention time of the
liquid but that this mixing is not sufficiently violent to seriously interfere
with the movement of the bubbles. Equation (64) is solved for ¢, to give

Co
96hQ,
1+ 370,
Our analyses so far presume that all particle-bubble encounters (r,;, <
a + 0) lead to attachment. If the solids concentration or the depth of the
pool, A, is large, the surface of the bubble may become saturated with
solid before the bubble reaches the top of the pool, in which case it will be
unable to attach additional particles. We assume that the bubbles are
small enough so that the entire surface may be coated with solid, and
examine the effects of this. We let b be the effective radius of a floc particle
(assumed spherical), and we assume that b « a, the bubble radius. Then the
maximum number of floc particles which a bubble can carry is given by

(65)

Ce =

dna®>  4a?
Prax = -TEb_Z = —I;T' (66)

Our previous analysis (the inviscid case) gave us 3ndach as the number of
particles captured by one bubble. Evidently for our previous analysis to
be valid we must have

3ndach < 4a*|b* (67)
which gives
ch<4a/3ndb* (68)

as the criterion which must be satisfied for our earlier formula, Eq. (62),
to be valid.
If

ch > 4af3n6b* (69)

a bubble removes 4a?/b* particles. If the air flow rate is Q, and the bubbles
are of radius a, then the number of particles being removed per second is
given by

40> Q, _ 30,
Fi .~ rab? (70)
-na®
3
So for a concentrated slurry satisfying Eq. (69) we have
de 30,

-V E = _nabz an
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which integrates to give
30,t
c(t) = co — =3+ O<t=t’ 72
( ) Co nab2 Vl’ <t ( )

where ¢’ is determined as follows. From Eq. (69) we have

4a
C(t/) = 37'E5b2/’l (73)
so that
30,t' 4a
o~ Tab?V, ~ 3nob’h 4
and
, 4a \mab®V,
b= <c° - 3n5b2h> 30, (79
For ¢t > ¢’ the analysis leading to Eq. (62) is valid, which yields
_ 4a —9Q,5h(t—1") ,
c(t) = 375575 SXP |: 2V, :l, t>t (76)

where we use Eq. (73) to fit ¢(¢) at ¢’. We note that dc/dt is continuous at
t’, which it should be on physical grounds.
For a continuous-flow pool-type apparatus, if

¢, > 4a/3ndb*h an
the bubbles are saturated with floc, and we have
30,
Q= c.Q, + Tab? (78)

on using Eq. (71) to determine the rate of particle removal in the foam.
This yields

_ 30,
% mab?Q,

(79)

Co = C

for concentrated slurries satisfying Eq. (77).

Conclusions

Our analysis indicates that the bubbles used in foam flotation from
liquid pools should be large enough so that their movement is well out of
the creeping flow regime; we recall, however, that viscous drag forces may
strip floc particles off of bubbles which are too large (/9). The rate of
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removal of particles is first order and is proportional to air flow rate, depth
of pool, and range of the bubble-floc particle interaction potential. It is
inversely proportional to the square of the bubble radius and to the
volume of liquid being treated. These conclusions apply to bubbles in the
inviscid flow regime. Bubbles in the creeping flow regime are much less
effective. Removal efficiencies from continuous-flow pool reactors exhibit
similar characteristics. We note that concentrated slurries, which satisfy
Eq. (69), exhibit removal rates which are independent of fioc concentra-
tion, pool depth, and range of interaction potential.
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