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Electrical Aspects of Adsorbing Colloid Flotation. XII. 
Floc Diffusion Rates in Nonideal Systems 

R. MOFFATT KENNEDY I11 and DAVID J. WILSON* 

DEPARTMENT OF CHEMISTRY 
VANDERBILT UNIVERSITY 
NASHVILLE, TENNESSEE 37235 

Abstract 

The dynamics of the diffusion of charged floc particles to charged air-water 
interfaces is examined within the framework of a modified Gouy-Chapman 
model in which the finite volumes of floc particles and inert electrolytes were 
taken into account. The methods of Verwey and Overbeek were used to cal- 
culate the electrical free energy of the floc-interface interaction. For the cases 
considered, diffusion was found to be quite rapid. Fluid mechanical considera- 
tions were used to calculate the capture cross-sections of rising bubbles for 
suspended floc particles; bubbles in the creeping and inviscid flow regimes 
were considered. These results were used to calculate removal rates from batch 
and continuous-flow pool-type foam flotation devices. 

INTRODUCTION 

The applications of foam flotation methods for the removal of inorganics 
from industrial wastewaters and for the recovery of trace inorganics for 
analysis have been studied extensively; a number of reviews are available 
(1-4). Grieves, Bhattacharyya, and their co-workers have published exten- 
sively on the use of foam flotation techniques in waste treatment; of 
particular interest to us here are their precipitate flotation studies of 
chromic hydroxide (5) and of wet scrubber wastewaters resulting from 
SOz removal from stack gases (6). Their work and the applications of 
adsorbing colloid flotation to trace metals analyses in seawater by Zeitlin 
and his co-workers (7-10, for example) encouraged us to explore the 
development of precipitate or adsorbing colloid flotation separations 
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I340 KENNEDY AND WILSON 

for a number of inorganic contaminants in industrial wastewaters (11-25). 
We also investigated the theory of the adsorption of precipitates at the 
air-water interface (16-19) ; Huang and Lee have also published recently 
on the coulombic model for precipitate-bubble attachment (20). 

One of the problems of interest in the flotation of flocs and precipitates 
is the dynamics of the forced diffusion of the particles to the air-water 
interface. The rate of this process, the range of the attractive force, the 
pattern of the streamlines of the liquid relative to the rising bubble, and the 
rise velocity of the bubble determine the efficiency of the bubble in scaveng- 
ing the particles from the solution. Huang used a simplified Gouy- 
Chapman model previously to examine forced diffusion of particles to the 
air-water interface (21); we here investigate a more exact model in which 
the attractive force is calculated by a modification of the method of Verwey 
and Overbeek for calculating the free energy of interaction (22) which takes 
into account the finite volumes of the ions (16). This yields information 
about the distance from which a bubble may attract a floc particle as liquid 
streams pass the rising bubble. We then examine the streamlines of the 
liquid flowing past the bubble to determine the effective collision cross- 
section of the bubble for floc particles. With this result it becomes possible 
for us to calculate rates of floc removal from both dilute and concentrated 
suspensions in batch and continuous-flow pool flotation experiments. 

NON IDEAL DIFFUSION 

Analysis 

We examine the diffusion of charged particles in a thin film of water 
bounded by two air-water interfaces onto which a charged surfactant is 
absorbed. We let 

L = the distance between the two air-water interfaces 
= surface potential of the air-water interfaces 

I)1 = surface potential of the floc due to its adsorption of potential- 
determining ions 

x = distance from the left air-water interface 

See Fig. 1. When the floc is of opposite potential to the air-water interface, 
the electrical attraction between this interface and the particles causes a 
migration of particles until the increase in particle chemical potential due 
to increased particle concentration balances out the decrease in the electri- 
cal potential energy of the particle. The solution is divided into 2N slabs 
of unit area oriented parallel to the air-water interfaces. The distance of 
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ADSORBING COLLOID FLOTATION. XI1 1341 

Surfactant ion 

FIG. 1. The model for analysis of diffusion rates in films. 

closest approach of a particle to the surface is considered to be lOA. 
Note that there is no net diffusion across the center of the film due to the 
symmetry of the problem, so that we need deal with only that half of the 
solution between 0 and L/2. 

The electrical potential in the region between the air-water interface 
and the water-floc interface is calculated by the method used previously 
(23), as outlined below. A 1-1 electrolyte is assumed, the ions of which are 
of comparable radius. The chemical potential is taken to be 

%ax p * ( x )  = p,,* f e$(x) + KTInc*(x) + kTIn 
c,,, - (c+ + c- )  

where p* = chemical potential of cation (anion) 
C* = cation (anion) concentration, ions/cm3 

c,,, = maximum electrolyte ion concentration 

The last term corrects for the nonideality of the inert electrolyte due to 
the finite volumes of the ions. At large distances from the surface the 
electric potential decreases to zero so that 

where c, is the salt concentration in the bulk solution. Since the chemical 
potentials at equilibrium are independent of x, they may be equated, 
yielding 

= +- e*(x) + In c * (x) %ax In c, + In 
C, - 2c, - kT 
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I342 KENNEDY AND WILSON 

Now let 

- Cm exp ( T e g )  (4) 
C *  

f -  

- c,,, - (c+ + c-) - Cmax - 2c, 

from which we find 

crnaxf* 
1 + f + + f -  C * ( X )  = 

The charge density in solution is given by 

p = e(c+ - c - )  (6) 

Substitution of Eqs. (4) and ( 5 )  into (6), and (6) into Poisson’s equation 
yields the modified Poisson-Boltzmann equation 

fi- A sinh (e@/kT) 
dx2 1 + Bcosh(e@/kT) 

- (7) 

where 

and 

B = 2Cm/(crnax - 2c.A 

For ions of [chargel ve, replace e by ve in these equations. Verwey and 
Overbeek present a complete discussion of the ideal case (22). 

The free energy of interaction per unit area between the fixed potential 
surfaces is calculated by a method discussed by Devereux and deBruyn 
(24). The charges of all ions, those adsorbed and those in solution, are 
imagined to be gradually built up in infinitesimal steps, ve d1. Lambda, 1, 
the charging parameter, varies from 0 to 1, and v is the valence of the ions. 
The free energy is equivalent to the work required to charge the double 
layers reversibly and isothermally plus a term contributed when 1 = 0. 
The equilibrium condition for adsorption is 

A p  + ve$o = 0 (8 )  

where A p  is the difference of the chemical potentials of an adsorbed ion 
and a free ion in solution, and i,b0 is the surface potential of the air-water 
interface. In charging the adsorbed layer, the chemical potential difference, 
Ap,  is considered to vary also; otherwise, as I approaches zero, the surface 
potential is forced to infinity: 

A p  + Ive+, = 0 (9) 
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ADSORBING COLLOID FLOTATION. XI1 I343 

Therefore 

AAp + Ive$o = 0 (10) 

and t,b0 remains constant. This condition has the advantage that the electri- 
cal work done in charging the adsorbed ions is exactly canceled by the 
change in chemical free energy of adsorption. The total free energy of the 
double layer is thus determined by the electrical work required to charge 
the ions in solution. The argument is exactly analogous for the water- 
floc surface potential. The charge density and potential at a point in 
solution for a particular value of A we take as p' and $ I ,  respectively. 
The net excess concentration of charge determining ions is then p'liive,, 
and the work required to increase the charge of these ions by vedA is 
p'$' dA/A. This work differential is integrated over the volume of solution 
to complete charge: 

Since $o and are constant, the double layers will have a nonzero 
potential energy at A = 0, which is dependent upon the distance separating 
the two planes, d. For parallel planes, 

where 

A$ = $1 - $0  

The total energy for the system is therefore expressed by 

(13) 
D 

G(d)  = -- (A$)2 + 1' 4 JJJ $'p' dx dy dz 
8nd 0 

The analysis (23) is outlined as follows. For the geometry of the system 
being considered, parallel planes, the space integration simplifies to one 
variable, x .  The surface potentials may also be substituted, giving 

1 d I I  

$o)2 + 1 1 &- dxdA 
D 

G(d)  = -- 
8nd (" - O O J  

Poisson's equation and Eq. (7) give 

where 
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I344 KENNEDY AND WILSON 

Substituting Eq. (15) and the identity 

a a$’ 
an an $‘ dn = -(A$’) dA - - dn 

D 
8xd = -- ($1 - $o)2 + I ,  + 12 

Integrating I, with respect to (A$’) gives 

1 dx 

DA 1 + Bcosh(pe$) 
l + B  

As has been shown (24, 

In order to change the variable of integration, the first integral of Eq. (7) 
is obtained by Newton’s method: 

Equations (20) and (18) are now substituted into Eq. (17), changing the 
variable of integration from x to $, to obtain 

(1 + B cosh 

1 + B cosh fie$]"' ’* 
1 + Bcoshpe$, 

(22) 
(1 + B)(1 + Bcosh pe$,) 

), H + c ln  
G(d) = -- 

where 

At infinite separations, C(co) is not zero, due to the existence of double 
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ADSORBING COLLOID FLOTATION. XI1 I345 

layers at each interface. Since the free energy of interaction of the double 
layers is the quantity desired, G(d) must be referenced to G(co). G(co) is 
calculated as follows. From Eq. (21), 

Now if d .+ CQ, the denominator of the integrand must vanish as $ -, 0 
since the limits of the integral are finite. Therefore 

so that 

(1 + B cosh /3e$)' 
(1 + B)(1 + B cosh /3e$o> 

1 + B c o ~ h / 3 r $ ] " ~  (25) 
IL H(co) + c ln  

G(W) = - -E l  
8n ILO [ H(CQ) + In 1 + B cosh 

The following usage of G is with respect to G(m), i.e., 

G = G(d) - G(w) 

The chemical potential of a floc particle we take as given as a function 
of position by 

The activity coefficient, (1 - C/CM)-l, which is analogous to the one used 
previously for the electrolyte, corrects for the excluded volume of the floc 
particles; C is the concentration of floc particles which is understood to 
be a function of two variables, x and time t .  

The differential equation governing isothermal diffusion in a fluid 
medium in the presence of a varying chemical potential is 

where 9 is the fluid viscosity and ro is the effective radius of the particle. 
In planar geometry, Eq. (27) simplifies to 

Substitution of Eq. (26) into Eq. (28)  yields a nonlinear partial differential 
equation which is not solvable in closed form. In addition, values of C(x) 
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I346 KENNEDY AND WILSON 

are not given in a closed form, Therefore it is necessary to integrate the 
equation numerically. A predictor-corrector method (25) was utilized 
which has been shown to have good stability (21) in problems of this type. 
From Fick’s First Law of Diffusion we see that the term in parenthesis 
in Eq. (28) is proportional to the negative flux of particles at a point in the 
solution. For the cell model being considered, the flux at the right-hand 
side, the side toward the bulk solution, of the ith cell is taken to be 

The superscript “OUT” indicates that the migration of particles is out of 
the cell if api/ax is positive and the average of the concentrations approxi- 
mates that at the wall. The flux into the cell at the left-hand wall (if 
api- , /ax is positive) is 

J : N = - (  ci-, + ci )-- 1 
ax 671qr0 

The finite difference representation of Eq. (28) for the change with time in 
the number of particles in the ith cell is 

i3Ci(t) 1 -- - - ( J I I N  - JioUT) 
at AX 

Substituting Eqs. (29) and (30) into Eq. (31) and including the finite differ- 
ence representation of the derivatives of the potentials gives the final form 

Equations (33) are now integrated with respect to t by the predictor- 
corrector method. 

Predictor: 
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Corrector: 

(36) 
At ac , ( t )  a q t  + ~ t ) ]  
2 [ dt + at Ci(t + A t )  = Ci( t )  + - - 

The starter formula for the use of the predictor-corrector is taken from 
Euler’s method : 

aci(t> Ci(t + A t )  = Ci(t)  + At - at (37) 

The boundary conditions are given by the requirements that there be 
no flux of floc particles at x = 0 and x = L/2, the center of the aqueous 
film. Then, in the first cell, 

J,“ = 0 
which gives 

aci ( t )  -=-- 
at 671qr0 AX 

In the Nth cell, 
JNoUT = 0 

Therefore 

A necessary condition of the numerical representation is that it conserves 
the total number of particles in the film at all times; i.e., 

This requirement may be seen to be fulfilled by summing Eq. (31), noting 
that .Ii+ 1” = JjoUT and that JilN = J Z U T  = 0. 

The concentration profile at equilibrium may be calculated by equating 
the chemical potentials of the floc particles in the potential fleld and in 
the bulk solution, where G(w) = 0. This gives 
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which yields 

C ,  exp (- G i / k T )  
1 + C,/C,[exp ( - G i / k T )  - 11 Ci' = 

To estimate the rate at which a nonequilibrium initial distribution of 
particles approaches the final equilibrium distribution, the following 
function is computed : 

i =  1 i =  1 
(43) 

V(t )  is the statistical variance of the concentration from that at equilibrium, 
divided by a normalizing factor. In all of the following calculations this 
initial distribution was taken as constant throughout the film and of a 
value of lod4 C,, except where noted. A semilog plot of V ( t )  vs t will 
yield information on the nature of the decay to equilibrium. Where 
essentially linear plots are obtained, the decay to equilibrium is expo- 
nential. The slope is then twice the rate constant, k, due to squaring the 
differences in V(t). The range over which the rate constant varies may be 
deduced if the plot is appreciably nonlinear. 

Results 

Concentration distributions of floc particles at various times are shown 
in Fig. 2 for a 100-A film. Since they are symmetrical, the curves are drawn 
only to L/2. The closest approach of the colloid to the air-water interface 
is restricted to 10 A. The parameters of the system are given in the caption. 
In all calculations the values of the dielectric constant and viscosity of the 
solvent were taken as those at 25"C, viz., 78.54 and 0.01 poise, respectively, 
except where influence of these parameters was investigated. The floc 
radius was 5.64A. It can be seen that there is initially a rapid influx of 
particles in the region nearest the charged surface. Minima in the curves 
are seen to develop since thermal diffusion is not fast enough to fill the 
depleted area. These regions progress into the solution until at equilibrium 
the curve is monotonic, the minimum occurring in the center of the film. 
The slopes of these curves should be zero at L/2 since ap/ax = 0 at that 
point. In fact, d p / d x  is not zero there for this lOOA film; at x = L/2 the 
particle still has a nonzero interaction energy with the air-water interface 
which is at x = 0, and the influence of the other air-water interface at 
x = L is neglected in our calculation. Figure 3 shows similar plots for a 
200-A film in which aC/ax is essentially zero at x= L/2. There is no interac- 
tion at that distance, 49(L/2) E 0, so that ap/ax z 0 in the center. This 
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T 
e - equilibrium 
9 - 762xlO'"sec 

3001 
0.0 0.1 0.2 0.3 0.4 0.5 

Distance (em) X lo-' 

FIG. 2. Colloid concentration vs distance from the air-water interface at various 
times, L = IOOA. yo = -50 mV, y1 = SO mv, cmax = mole/cc, cm = 

mole/=. 

720r e l  

T 
e - equilibrium_,o 
9 - 338.2 XI0  sec 
8 - 180.8 
7 - 103.2 
6 -  59.6 
5- 34.0 
4- 19.2 
3- 10.6 
2 -  5.3 
I - 2.1 
0- 0 

2401) ; 4 6 ;1 Ibxlo-7 
Distance (cm) 

FIG. 3. Colloid concentration vs distance from the air-water interface at various 
times, L = 200 A. yo = -50 mV, yl = SO mV, cmax = lo-' mole/cc, cm = 

mole/cc. 
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I350 KENNEDY AND WILSON 

problem is not a factor in the calculations of the rate constants, since this 
200 A film is the thinnest we normally considered. 

Figure 4 shows the time dependence of V(t)  at various inert 1-1 elec- 
trolyte concentrations. After initial rapid decay, the slope of In V(t)  vs t 
becomes constant for these 400 A films. Rate constants for these curves are 
given in Table 1. Also in Table 1 are the rate constants calculated with 
other values of c,,,. For c,,, = lo-’ mole/cc, increasing the electrolyte 
concentration from to mole/cc increases the rate constant, and 
in the range of lo-’ to lo-’ mole/cc the rate constant varies negligibly. 
In the latter range the free energy of interaction is large near the air-water 
interface and extends a great distance into the film. This condition neces- 
sitates large changes in the floc concentrations as equilibrium is 
approached; positive near x = 0 and negative near x = L/2. Therefore 
a large fraction of the total number of particles must migrate from the bulk 
solution to the surface. After initial redistribution due to electrical forces, 
migration is increasingly due simply to random movement. Therefore the 
rate constants are smaller than those in the c, = lo-’ to mole/cc 
range. In this more concentrated range the free energy near the surface is 
rapidly decreasing in absolute value with increasing salt concentration, 

FIG. 4. Change of V(t> with time at several inert electrolyte concentrations 
(given beside each curve in mole/cc). cmax = mole/cc, wo = -100 mV, 

yl = lmrnV,L =mA. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



ADSORBING COLLOID FLOTATION. XI1 1351 

TABLE 1 

Variation of Rate Constants with Inert Salt Concentration' 

CmaX C k x 1?-" 
(mole/cc) (mole/cc) (sec- ) 

10-4 

10-3 

10-5 

10-7 
10-4 
10-5 

10-7 
1 0 - 3  
10-4 
10-5 

10-7 

10-6 

10-6 

10-6 

5.908 
6.006 
6.071 
7.152 
5.975 
6.002 
6.072 

10.063 
7.618 
5.993 
6.001 
6.072 

~ 

"Conditions : L = 400 A, yo = - 100 rnV, y1 = 100 mV. 

while at the same time the extent to which the potential's influence reaches 
out into the solution decreases due to ionic screening. The resulting 
decrease in equilibrium particle concentration in the vicinity of the air- 
water interface causes an increase in the rate constant since the transfer 
of particles from one region of the film to another is not so extensive. The 
effect of nonideality of the salt is small, but may be seen by examining 
data at  c, = mole/cc, at which the rate constant is seen to decrease 
with decreasing maximum concentration, c,,,. These rate constants may 
be compared to the eigenvalues obtained in the simple one-dimensional 
diffusion problem with absorbing boundaries, the lowest of which is 

nkT 
(44) 

For the conditions in Table 1, /2d = 2.4 x lo6 sec-'. This least value is 
not a close approximation to the driven diffusion rate constants. 

The effects of varying the electric potentials are next examined. Figure 
5 shows the change of V(t )  with $1,  the water-floc potential, and Table 2 
gives the rate constants. As $l decreases, the rate constant increases. The 
explanation is the same as the one for the case of salt concentration 
dependence; increasing the potential increases the amount of colloid that 
must migrate past a given plane. After a quick redistribution in the electric 
field, migration is limited by thermal diffusion. The effects are reciprocal 
in that interchanging the absolute values of $o and does not change the 
rate constant since the potential energy is unchanged; this gives a con- 
sistency check on our analysis and computer programs. 
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too 

50 

25 

1V9- I I I 1 

0 I 2XIU'' 
t (secl 

FIG. 5. Change of V ( t )  with time at several water-floc potentials (wl given beside 
each curve in mV). t,uo = -100 mV, cmax = lo-* mole/cc, c = mole/cc, 

L = 400A. 

TABLE 2 

Variation of Rate Constants with the Surface Potentials" 

- 100 
- 100 
- 100 
- 50 
-50 
- 50 
- 25 
- 25 
- 25 

100 
50 
25 

100 
50 
25 

100 
50 
25 

5.966 
7.912 
8.876 
7.912 
9.358 
9.903 
8.876 
9.903 

10.22 

"Conditions: cmax = mole/cc, c = mole/cc, L = 400A. 

Rate constants increase with increasing temperature as shown in Table 3. 
In Table 4 is the variation in rate with the radius of the floc particle. 
Increasing the radius decreases the rate constant. Evidently the effect of 
the increased viscous drag, which affects particle motions throughout the 
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TABLE 3 

Variation of Rate Constants with Temperature 

Temperature (“C) k x 10-6(sec-1) 

10 
25 
50 
75 
90 

8.739 
9.358 

10.38 
11.39 
11.97 

TABLE 4 
Variation of Rate Constants with Floc Radius“ 

Radius (A) k x 10-6(sec-1) 

5.64 
6.77 
7.90 
9.03 

10.14 
11.28 
14.10 
16.93 

9.358 
7.358 
5.870 
4.731 
3.824 
3.129 
2.074 
1.652 

“Conditions: L = 4 0 0 A ,  c,,, = 
y1 = 50mV. 

mole/cc, c = mole/cc, yo = -5OmV, 

TABLE 5 

Variation of Rate Constants with Electrolyte Charge 

(elementary units of charge) k x (sec-l) 
Charge 

1 
2 
3 

9.358 
9.686 

10.05 

solution, is greater than that of the increased electrostatic attraction, 
which operates only in the boundary layer where an electric potential 
gradient exists. 

In Table 5 ,  rate constants are seen to increase with increasing charge 
of the 1-1 electrolyte. The explanation is as before when the electric 
potential is changed by screening due to increased electrolyte concentra- 
tion; a smaller amount of floc must be moved. The small variation of the 
rate constants with initial floc concentration, shown in Table 6, indicates 
the excluded volume of the particles has only a minor effect. The initial 
concentrations are fractions of the maximum floc concentration, C,. Rate 
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TABLE 6 

Variation of Rate Constants with Initial Floc Concentration" 

Initial concentration 
(mole/cc) k x (sec-') 

10-4 C M  

10-3 C M  

lo-' c, 
lo-' C M  

9.368 
9.368 
9.482 

10.69 

"Conditions: L = 400A, cmaX = lo-' mole/cc, c = 

yI = 50mV. 
mole/cc, vo = -5OmV, 

I I I I 

I 2x lo-' 
t (sec) 

FIG. 6. Change of V ( t )  with time at several film lengths ( L  given beside each 
curve in A). yo = -50 mV, pI = 50 mV, cmaX = 

mole/cc. 
mole/cc, c = 

constants increase with increasing concentration, which is probably due to 
a limitation of the total movement of particles when concentrations in the 
vicinity of the air-water interface are near the maximum possible. 

The last plot shows changes in V(t)  at film thicknesses of 400 to 4000 A. 
The data in Fig. 6 yield the rate constants in Table 7. As expected from 
Eq. (44), the rate constants decrease with increasing thickness of the film. 
The decrease approximates the inverse square relationship for very thin 
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TABLE 7 
Variation of Rate Constants with Film Length 

Length (A) 
~~ 

k x 10-6(sec-1) 

200 
400 
500 
750 

1000 
2000 
3000 
4Ooo 

41.90 
9.358 
5.598 
2.957 
2.172 
1.554 
1.442 
1.381 

TABLE 8 
Change of the Rate Constant with Time for L = 4000 & 

Time x 10' (sec) k x 10-6(sec-1) 

2.19 1.381 
8.72 0.414 

34.8 0.139 

'Conditions: yo = -50 mV, yl = 50 mV, c,,, = lo-' mole/cc, c = mole/=. 

films but does not adhere at all to that relationship for thicker films. 
Close examination of the graphs shows V(t)  not to be linear at longer 
lengths, however, and indeed, Table 8 shows a dramatic change in k with 
time. Calculation of k at the longest time required 5 min of computer time; 
therefore, to search for a limiting value of k would require excessive 
computer time. It is concluded then that for a large film thickness, k 
varies over a wide range of values, though still large, and does not soon 
become constant as was thought in the ideal case (21). Most of the rate 
constants determined in this nonideal case are slightly less than those 
calculated by the ideal model. Since the parameter values of the ideal and 
nonideal models were not exactly the same, an exact comparison is not 
possible, but values in this work may be extrapolated to the conditions of 
the ideal case. Interpolating between L = 200A and L = 400A to the 
value of 300 A used in the ideal model and also to a particle radius of 10 A 
gives a rate constant of 6 x lo6 sec- '. The range reported in the ideal case 
was 1.5 to 2.0 x 10' sec-'. 

Conclusions 

The nonideal model, which includes activity coefficients for the chemical 
potentials of the colloid and inert electrolyte and improved calculation of 
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interaction potentials, gives rate constants typically one-third to one-half 
those of the ideal model. These values, of the order of 6 x lo6 sec-', 
are exceedingly large, so that the particle distribution near interfaces in 
a dynamic system, such as a flotation cell, must approach that at equi- 
librium. This equilibrium may be shifted to a higher density of colloid in 
the air-water surface region (thus increasing separation efficiency) by 
increasing one or both of the surface potentials, air-water or water-floc, 
decreasing dissolved electrolytes, or increasing particle area, but associated 
with these changes is a decrease in the rate of approach to that equilibrium. 
This result is apparently due to the increase in the total movement of the 
particles in the film. The approach to equilibrium does not become an 
exponential decay for films greater than 1000 8, until extremely long times 
have elapsed. 

FLUID MECHANICS OF FLOC-BUBBLE ATTACHMENT 

Here we examine the rate at which a bubble rising through a pool of 
liquid encounters and captures floc particles in its path. We consider that 
the liquid is at rest except for the disturbance of the rising spherical bubble 
which is moving at a terminal velocity determined by its buoyancy and 
viscous drag. In order for capture to occur, we assume that the surface 
of the bubble must pass within a distance 6 of the floc particle, and we 
assume that the floc particles as seen from the bubble move past it on the 
streamlines of the liquid as the bubble rises. 

The Reynolds number for a sphere moving in a fluid is 

Re = 2avp/q (45) 

where a = sphere radius 
u = sphere velocity 
p = liquid density 
q = liquid viscosity 

For Re 5 lo4, it can be shown that (26) 

For Re < 1, Stokes' law holds pretty well; one has viscous, streamlined 
flow past the sphere, and no eddy wake is formed. At larger Reynolds 
numbers a turbulent wake is formed, viscous forces become small com- 
pared to momentum forces, and we can approximate the flow as inviscid 
(27). The maximum bubble size for which we have viscous, creeping flow 
is given by setting Re = 1 and equating the buoyancy force and the 
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Stokes’ law viscous drag force 

4n - pa3g = 6nqav 3 

These relationships yield 
113 

a = (g) = 6.12 x cm 

(47) 

for water. 

flow around a rising bubble. The streamlines can be written as 
We next examine the path of elements of a viscous fluid in creeping 

1 .  
z = 2y2 - 3y + -) sin2 8 ( Y (49) 

The situation is diagrammed in Fig. 7. Here y = r/a,  and for any particular 
streamline z = a constant. For points a great distance in front of or 
behind the bubble (p  finite, 1x1 -+ co), we have 

The streamlines (plotted in Fig. 8) come closest to the bubble when 8 = 
4 2 ,  since 

- = -  dy (4y4 - 3y3 + ’) cot 8 = 0, when 8 = n/2 (51 )  de 4y3 - 3y2 - 1 

For 8 = 7112 we have 

We let r = a + 6 ,  where 6 is the distance across which coulombic attrac- 
tion could pull the particle to the bubble surface in the time available. So 
y = 1 + 6/a, and we assume that 6/a << 1 .  Substitution of this expression 

FIG. 7. A bubble rising through a liquid-notation. 
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.O 5 

Y 

0 .05 cm .I0 .I5 
X- 

FIG. 8. Streamlines about a bubble rising through a liquid in the creeping flow 
regime. 

for y into Eq. (52) and expansion of I/y in ascending powers of 6/a then 
yields 

so that 

P m  < = JT26 (54) 
if the particle is to be captured as the bubble passes. A particle must lie 
within a distance 43/26 of the path of the center of the bubble in order for 
it to be able to attach to the bubble as it passes. Since the range of the 
particle-bubble forces is rather short, we see that the actual volume of 
liquid from which particles would be swept as the bubble rises a distance h 
is quite small, given by 

Vcf = npm2h = (3/2)nd2h (55)  
The above analysis is based on the assumption that the bubbles are small 

enough to be in the viscous creeping flow regime. If the bubbles are 
larger, inertial effects become more important, and we approach the case 
of inviscid flow. We next examine this case, but must neglect the turbulence 
in the wake of the bubble-we assume an ideal inviscid liquid. For this 
case the streamlines are given by (27) 

where our notation is as before. It is readily shown that z is again given by 
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.I0 cm 

I 
.05 cm .I0 15 a 

X' 

FIG. 9. Streamlines about a bubble rising through a liquid in the inviscid flow 
regime. 

0 

Eq. (50), and that the streamlines approach most closely to the bubble 
when 8 = 7112. See Fig. 9. We again let y = 1 + 6/a ,  substitute into Eq. 
(56),  expand l/y in ascending powers of 6/a,  and truncate the series to 
obtain 

-- 2pm - 6 - + O  - +. . .  
U 2  U (3' 

so that 
_. 

pm = J36a 

(57) 

if a particle is to be captured. The volume of liquid from which particles 
are captured when the bubble rises a distance h is 

V ,  = npm2h = 3 ~ 6 a h  (59) 

which is very much larger than the corresponding volume for the case of 
creeping flow, given by Eq. (55). 

We next calculate the rate of removal of floc particles by flotation from 
a column of liquid of height h through which bubbles of radius a are 
passing at a volumetric flow rate of Qa mL/sec. We let V ,  be the volume 
of liquid being treated. The number of bubbles passed through the 
column per second is then given by 

If we let c ( t )  be the number of floc particles per milliliter at time t ,  then 
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3Q 
4na3 - V ,  dc = c3rr6ah 2 dt 

gives the rate of change of c with t for bubbles large enough to be in the 
inviscid regime. Integration of Eq. (61) yields 

c ( t )  = c(0) exp [ -;p;y 
In similar fashion we find that 

c ( t )  = c(0) exp [ -:5;ht] 
for the creeping flow regime. 

the sort diagrammed in Fig. 10. We let 
Let us next consider a continuous-flow pool-type flotation apparatus of 

Q, = volumetric flow rate of liquid 
Q, = volumetric flow rqte of air 
co = influent floc concentration 
ce = effluent floc concentration 

The other symbols are as previously defined. In the steady state we have 

FIG. 10. A continuous-flow pool-type flotation apparatus. 
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if we assume that the pool is well-stirred during the detention time of the 
liquid but that this mixing is not sufficiently violent to seriously interfere 
with the movement of the bubbles. Equation (64) is solved for c, to give 

CO c, = 
+ 96hQa 

4a2Qi 
Our analyses so far presume that all particle-bubble encounters (rmin I 

a + 6) lead to attachment. If the solids concentration or the depth of the 
pool, h, is large, the surface of the bubble may become saturated with 
solid before the bubble reaches the top of the pool, in which case it will be 
unable to attach additional particles. We assume that the bubbles are 
small enough so that the entire surface may be coated with solid, and 
examine the effects of this. We let b be the effective radius of a floc particle 
(assumed spherical), and we assume that b << a, the bubble radius. Then the 
maximum number of floc particles which a bubble can carry is given by 

h a 2  4a2 
nb2 -b' nmax = - - 

Our previous analysis (the inviscid case) gave us 3n6ach as the number of 
particles captured by one bubble. Evidently for our previous analysis to 
be valid we must have 

3n6ach 2 4a2/b2 (67) 

ch I 4a/3n6b2 (68) 

which gives 

as the criterion which must be satisfied for our earlier formula, Eq. (62), 
to be valid. 

If 

ch > 4a/3n6b2 (69) 
a bubble removes 4a2/b2 particles. If the air flow rate is Qa and the bubbles 
are of radius a, then the number of particles being removed per second is 
given by 

So for a concentrated slurry satisfying Eq. (69) we have 
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which integrates to give 

c ( t )  = co - - 3 Qat O 5 t r t ’  nab2 V,’ 

where t ’  is determined as follows. From Eq. (69) we have 

4a 
3n6b2h c( t ’ )  = - 

so that 

and 

For t > t ‘  the analysis leading to Eq. (62) is valid, which yields 

, t > t ‘  1 4a -9Qa6h(t-t’) 
c( t )  = - 37r6b2h 

(73) 

(74) 

(75) 

where we use Eq. (73) to fit c ( t )  at t ’ .  We note that dcldt is continuous at 
t ‘ ,  which it should be on physical grounds. 

For a continuous-flow pool-type apparatus, if 

c, > 4a/3n6b2h (77) 
the bubbles are saturated with floc, and we have 

on using Eq. (71) to determine the rate of particle removal in the foam. 
This yields 

3Qa c, = co - - nab’Q, (79) 

for concentrated slurries satisfying Eq. (77). 

Conclusions 

Our analysis indicates that the bubbles used in foam flotation from 
liquid pools should be large enough so that their movement is well out of 
the creeping flow regime; we recall, however, that viscous drag forces may 
strip floc particles off of bubbles which are too large (19). The rate of 
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removal of particles is first order and is proportional to air flow rate, depth 
of pool, and range of the bubble-floc particle interaction potential. It is 
inversely proportional to the square of the bubble radius and to the 
volume of liquid being treated. These conclusions apply to bubbles in the 
inviscid flow regime. Bubbles in the creeping flow regime are much less 
effective. Removal efficiencies from continuous-flow pool reactors exhibit 
similar characteristics. We note that concentrated slurries, which satisfy 
Eq. (69), exhibit removal rates which are independent of floc concentra- 
tion, pool depth, and range of interaction potential. 
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